ar X iv : 0 71 0 . 14 25 v 1 [ m at h . D G ] 7 O ct 2 00 7 Classification of 1 st order symplectic spinor operators over contact projective geometries
نویسنده
چکیده
We give a classification of 1 st order invariant differential operators acting between sections of certain bundles associated to Cartan geometries of the so called metaplectic contact projective type. These bundles are associated via representations , which are derived from the so called higher symplectic, harmonic or generalized Kostant spinor modules. Higher symplectic spinor modules are arising from the Segal-Shale-Weil representation of the metaplectic group by tensoring it by finite dimensional modules. We show that for all pairs of the considered bundles, there is at most one 1 st order invariant differential operator up to a complex multiple and give an equivalence condition for the existence of such an operator. Contact projective analogues of the well known Dirac, twistor and Rarita-Schwinger operators appearing in Riemannian geometry are special examples of these operators.
منابع مشابه
ar X iv : 0 71 0 . 44 41 v 1 [ m at h . D G ] 2 4 O ct 2 00 7 Calabi - Yau cones from contact reduction
We consider a generalization of Sasaki-Einstein manifolds, which we characterize in terms both of spinors and differential forms, that in the real analytic case corresponds to contact manifolds whose symplectic cone is Calabi-Yau. We construct solvable examples in seven dimensions. Then, we consider circle actions that preserve the structure, and determine conditions for the contact reduction t...
متن کاملar X iv : 0 71 0 . 14 19 v 1 [ m at h . R A ] 7 O ct 2 00 7 GELFAND - KIRILLOV CONJECTURE FOR SYMPLECTIC REFLECTION ALGEBRAS
We construct functorially a class of algebras using the formalism of double derivations. These algebras extend to higher dimensions Crawley-Boevey and Holland's construction of deformed preprojective algebras and encompass symplectic reflection algebras associated to wreath products. We use this construction to show that the quotient field of a symplectic reflection algebra is " rational " , co...
متن کاملar X iv : 0 71 0 . 13 81 v 1 [ m at h . FA ] 6 O ct 2 00 7 On the symplectic phase space of KdV
We prove that the Birkhoff map Ω for KdV constructed on H 0 (T) can be interpolated between H 0 (T) and L20(T). In particular, the symplectic phase space H 1/2 0 (T) can be described in terms of Birkhoff coordinates.
متن کاملar X iv : 0 71 0 . 30 13 v 1 [ qu an t - ph ] 1 6 O ct 2 00 7 Spectra of phase point operators in odd prime dimensions and the extended Clifford group
We analyse the role of the Extended Clifford group in classifying the spectra of phase point operators within the framework laid out by Gibbons et al for setting up Wigner distributions on discrete phase spaces based on finite fields. To do so we regard the set of all the discrete phase spaces as a symplectic vector space over the finite field. Auxiliary results include a derivation of the conj...
متن کاملar X iv : 0 80 7 . 00 58 v 1 [ m at h . D G ] 1 J ul 2 00 8 EQUIVARIANT DIFFERENTIAL CHARACTERS AND SYMPLECTIC REDUCTION
We describe equivariant differential characters (classifying equi-variant circle bundles with connections), their prequantization, and reduction.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008